Drain Patching / lining

By: admin | Posted on: October 17, 2020

Complete Preservation carry out CCTV drain surveys, along with drain repairs using our unique drain lining / patching system with fast cure times. Our drain patching system is a no dig system, which means most repairs can be carried out below ground, without any disturbance to above ground areas. This can save time and money if drives, paths, and even home internal floor finishes can remain in situ. The below image demonstrates a damaged drain pipe on the left hand side, and a drain lining system that has been installed on the right hand side.

drain lining and drain patching wiltshire

Damaged drain symptoms

If you have rising damp issues on your external or internal walls, damp or flooding in your sub floor void that’s causing dry rot or wet rot, blocked drains, slow draining drains, walls that have cracking / subsidence, this is likely to be related to drain defects. These defects could be caused by root intrusion, and damaged/cracked drains, and need to be inspected and possibly be eliminated with a drain CCTV camera to prevent further issues.

We offer quantitative moisture analysis when it comes to rising damp, following the methodology in BRE Digest 245, along with all types of sympathetic damp repairs, dry rot and wet rot repair, to include drying of sub floor voids.

Contact us to discuss your issues, and we can offer you some professional guidance where needed.

enquiries@completepreservation.co.uk


What is BRE DIGEST 245

By: admin | Posted on: August 30, 2020

Also called BRE DG 245.

It is part of Building Research Establishment (BRE) digests on authoritative summaries of state of the art on specific topics in construction design and technology. They draw on BRE’s expertise in these areas and provide essential support for all involved in design, specification, construction and maintenance. This particular document can be purchased direct from BRE for just £15.00 here https://www.brebookshop.com/details.jsp?id=287528

This Digest considers the causes of dampness in walls and offers a positive method for diagnosis of rising damp. It suggests possible remedial measures that can be taken to avoid rising damp such as providing a complete moisture barrier by insertion of a physical damp-proof course or the non-traditional method of chemical injection. The repair of plaster damaged by damp is also discussed.

Mechanism of rising damp

For water to rise in a wall, a supply must be available at the base. If the ground surrounding the wall is saturated, this condition is achieved, but if the ground is not saturated the soil will exert a suction that will oppose
the upward capillary pull on the water in the wall. This suction is approximately equivalent to the negative pressure exerted by a column of water extending from the base of the wall to the water table. If the water table falls, the height of the moisture in the wall will drop to a new level provided there is sufficient time for equilibrium to become established. Each period of heavy rain on the ground at the base of the wall will produce a temporary condition of saturation and the water level in the wall will begin to rise again.

The level to which it rises depends on two factors: the amount of evaporation of water from a wet wall and on the resistance to the flow of moisture up the wall. If this resistance is high (as in a material with many fine pores), the effect of evaporation is most marked reducing the appearance of rising damp, but if the wall material has many coarse pores, the height of dampness will be only slightly affected by normal rates of evaporation.

Increasing the heat input to the structure will increase the rate of evaporation from the wall surfaces. The overall effect is to increase the rate of flow of water up the wall but because of the resistance to flow this is likely to be accompanied by a reduction in the height to which the moisture extends.

In addition, evaporation will occur from deep in the pores of the plaster so that the rising damp seems to disappear. In summer, hot weather will increase the evaporation rate and lower the water table so the effect of reducing the appearance of the rising damp can be even more striking.

Water drawn from the soil usually contains a low concentration of soluble salts and the rising water will also dissolve salts present in the bricks or the mortar. When evaporation occurs the salt solution becomes more concentrated at the surface and eventually the salts will crystallise out. This tends to block the pores, reducing evaporation and hence raises the level of dampness. These salts may also be hygroscopic and will absorb moisture from the air above some critical value of relative humidity so that the surface becomes wet during wet weather, although this dampness disappears when the air becomes drier again.

All this suggests that under real, dynamic conditions rising damp in a wall is often in a rather sensitive equilibrium which may be considerably disturbed by changes in the heating of the building and in the level of the water table. The presence of hygroscopic salts tends to obscure any drying associated with such changes by keeping the wall more moist than it would otherwise be. If such salts are removed from the surface by removing the old plaster, and the heating system is improved, it is likely that the apparent dramatic improvement in the appearance of the wall surface will give the impression that the rising damp has been cured when this is not actually the case. It is against this background that the correct diagnosis of rising damp becomes important.

BRE DIGEST 245 is the only way to offer quantitative moisture analysis to prove if a wall has rising damp. This is well documented in the British Standard, BS 6576, BS 5250. BRE digest 245 clearly shows multiple pictures of possible causes of rising damp where there is a physical damp proof course installed that has been bridged by one way or another.

The above image shows rising damp being caused by the damp proof course being bridged by the plaster

Obviously solid wall properties built before a physical damp proof courses were installed can still have similar causes like high ground levels, modern renders rendered to the floor etc, that can cause rising damp issues. Many older properties also had land drainage incorporated around the property which were installed if an area was deemed to be very wet, which is discussed BRE DIGEST 245. I’ve personally noted this on many of the older historic local buildings I have worked on in the area. This is an extract from my local Bye-laws of the in Warminster Local Board from 1858. Drainage of subsoil and prevention of damp. The house drainage shall be constructed, either with additional eathernware pipe drains or otherwise, as to drain the subsoil of the premises, whenever the dampness of the site appears to the Board to render this necessary; and all the rain-water shall be so drained or conveyed from the roofs of the buildings as to prevent its dripping on to the ground and causing dampness in the walls.

In addition, evaporation will occur from deep in the pores of the plaster so that the rising damp seems to disappear. In summer, hot weather will increase the evaporation rate and lower the water table so the effect of reducing the appearance of the rising damp can be even more striking.

Water drawn from the soil usually contains a low concentration of soluble salts and the rising water will also dissolve salts present in the bricks or the mortar. When evaporation occurs the salt solution becomes more concentrated at the surface and eventually the salts will crystallise out. This tends to block the pores, reducing evaporation and hence raises the level of dampness. These salts may also be hygroscopic and will absorb moisture from the air above some critical value of relative humidity so that the surface becomes wet during wet weather, although this dampness disappears when the air becomes drier again.

All this suggests that under real, dynamic conditions rising damp in a wall is often in a rather sensitive equilibrium which may be considerably disturbed by changes in the heating of the building and in the level of the water table. The presence of hygroscopic salts tends to obscure any drying associated with such changes by keeping the wall more moist than it would otherwise be. If such salts are removed from the surface by removing the old plaster, and the heating system is improved, it is likely that the apparent dramatic improvement in the appearance of the wall surface will give the impression that the rising damp has been cured when this is not actually the case. It is against this background that the correct diagnosis of rising damp becomes important

Experience has shown that it is much more difficult to diagnose the source of dampness in a wall than is generally supposed. It is particularly difficult where the presence of some soluble salts greatly complicates the situation, especially when just a damp meter is being used.

BRE DIGEST 245 is guidance on the diagnosis of rising damp on a rational basis. The basis of the method proposed is to to drill samples, from the wall and measure the free water value and hygroscopic value of the said samples. The aim is to establish whether any dampness damage is caused by rising damp as opposed to other processes, then a location away from other sources like drains, gutter leaks etc. If visible damp or high damp meter readings are located on external and internal walls, ideally many samples should be taken as multiple causes could be causing the symptoms.

Once all of the laboratory analysis is finalised, then we can produce a graph detailing the moisture, and this will help determine the damp issue.

Whilst gravimetric sampling is far superior than using a carbide meter/speedy meter, it is imperative that the guidance in BS: 6576 is used to eliminate other potential causes. An example being that perhaps gravimetrics have proved that rising damp is a cause of the decorative internal spoiling, which is the actual sympton of rising damp. The actual cause of the rising damp could still be something like damaged below ground drainage that would need to subjected to a CCTV drain survey. Gravimetrics and hygroscopic salt analysis sometimes points to there being no nitrates or chlorides present, which then points to drain issues or leaks within the property. This means that finding the root cause, and drying of the building is all that is needed, rather than removing all of the plaster and getting it replaced.

Whilst it sometimes might sound like a slow process and unduly complicated, but no simpler procedure has proved to be reliable.

Some damp issues can cost a small fortune to fix, and so can the amount of errors in damp diagnosis by damp experts. This is why it is imperative that the diagnosis is correct first time.

If you need advice regarding damp issues, give us a shout.

Please don’t contact us for free damp surveys, as this isn’t something we offer. enquiries@completepreservation.co.uk


Rising damp, and drain survey Trowbridge

By: admin | Posted on: July 28, 2020

This is a property I have previously surveyed last year, where there were issues with penetrating damp. We found external issues with rainwater goods, peeling modern paint, rotten timber lintels etc. We removed the modern masonry paint using our Thermatech super heated hot water system, repointed in lime, lime rendered the rear wall, and the client carried out the lime wash finish. We also removed and repealed the lintels. This year it was about getting the rising damp source identified, and some form of sympathetic damp repair. This video is a classic example of you get what you pay for, in regards to damp surveys. We don’t offer free damp surveys because we offer professional surveys, and reports. If you need to find the source of rising damp, penetrating damp, or condensation give us a shout. We offer quantitative damp diagnosis following the methodology in BRE DIGEST 245.


Rising damp cause found after 30 years

By: admin | Posted on: July 25, 2020

This property has been suffering from damp issues for a number of years, and it hasn’t been diagnosed correctly. I was told there were a few suggestions as of why it was thought to be damp, but we have found the cause now. Before you even think about damp proofing a building, it is about elimination before coming to a conclusion. I’ve seen many a times when a damp survey Company have carried out a damp survey, and haven’t eliminated anything in regards to potential causes of rising damp. In this case, this is a classic example of an obvious cause of rising damp, but unfortunately for some people who have paid for a damp survey there is no drain inspection carried out. Now i’m not saying that every property should have a drain survey, but there is British Standards in regards to damp surveys that actually mention this, especially if you have damp internally adjacent a drain. See below from British Standard BS 6576 4.2.1.3 d)

So the question is why doesn’t this get inspected? In my opinion if you ask any surveyor whether the firm is independent or not they will probably not offer a drain survey as this isn’t a piece of equipment they actually have. So it’s unlikely at enquiry stage they would want to lose out on a survey. To be fair though, any prior conversation the surveyor might have had with the client, they might think that from your observations the damp might be more condensation related, and this is reasonable. A decent CCTV drain inspection camera will cost around £5000.00 / £6000.00, plus you will need jetting equipment, and cleaning equipment along with sonde detection. All of this is likely to cost around £15000.00, plus a van to carry it in. You can now see exactly why a general surveyor wouldn’t offer this service.

We have heavily invested in our surveying equipment to ensure we get the diagnosis right first time. If you need a CCTV drain survey along with quantitative moisture analysis following BRE DIGEST 245, please contact us to discuss your issues.

The video below shows the cause of the rising damp. This was caused when the tarmac path was installed over 30 years ago, and damaged the drains.